For the malaria parasite to reach the blood of its human host, it must first enter the liver, where only a small number of parasites differentiate and replicate for upwards of seven days, making it a bottleneck in the parasite’s lifecycle. This bottleneck makes the liver stage an optimal target for effective and long-lasting vaccines against the disease. Using Spatial Transcriptomics and single-cell RNA-sequencing technologies, researchers at Stockholm University have for the first time managed to create a spatio-temporal map of malaria infection in the mouse liver. A study that was recently published in Nature Communications.
New antibody may offer effective drug treatment for breast cancer
An enzyme that may help some breast cancers spread can be stopped with an antibody created in the lab of Cold Spring Harbor Laboratory Professor